ПAmIBIA UПIVERSITY OF SCIEחCE AПD TECHחOLOGY

> FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES SCHOOL OF NATURAL AND APPLIED SCIENCES DEPARTMENT OF MATHEMATICS, STATISTICS AND ACTUARIAL SCIENCE

QUALIFICATION: BACHELOR OF SCIENCE HONOURS IN APPLIED MATHEMATICS	
QUALIFICATION CODE: 08BSHM	LEVEL: 8
COURSE CODE: ADC801S	COURSE NAME: ADVANCED CALCULUS
SESSION: JUNE 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Prof A.S Eegunjobi
MODERATOR	Prof O.D Makinde

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover
2. (a) If $x=r \cos \theta$ and $y=r \sin \theta$, find the (r, θ) equations for ϕ which obeys Laplace's equation in two-dimensional caresian co-ordinates

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \tag{5}
\end{equation*}
$$

(b) if $Q=\log (\tan x+\tan y+\tan z)$, show that

$$
\begin{equation*}
\sin 2 x \frac{\partial u}{\partial x}+\sin 2 y \frac{\partial u}{\partial y}+\sin 2 z \frac{\partial u}{\partial z}=2 \tag{5}
\end{equation*}
$$

(c) If $u=x^{2} \tan \frac{y}{x}$, find

$$
\begin{equation*}
\left.\frac{\partial^{2} u}{\partial x \partial y}\right|_{(-1,2)} \tag{5}
\end{equation*}
$$

2. (a) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting from the point $X_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$ using Davidon-Fletcher-Powell (DFP) method with

$$
\left[B_{1}\right]=\left[\begin{array}{ll}
1 & 0 \tag{10}\\
0 & 1
\end{array}\right], \quad \epsilon=0.01
$$

(b) Minimize $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}+2 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$ by taking the starting from the point $X_{1}=\left\{\begin{array}{l}0 \\ 0\end{array}\right\}$, by using Newton's Method
3. (a) If

$$
\phi=x^{n}+y^{n}+z^{n}
$$

show that

$$
\begin{equation*}
\mathrm{r} \cdot \nabla \phi=n \phi \tag{8}
\end{equation*}
$$

where n is constant
(b) Find the directional derivative of the function

$$
\phi(x, y, z)=x^{2} y-3 y z+2 x z
$$

in the direction

$$
\begin{equation*}
\mathrm{n}=4 i-7 j+4 k \tag{8}
\end{equation*}
$$

at the point $(3,-2,1)$.
4. (a) Determine the minimum distance between the origin and the hyperbola defined by $x^{2}+8 x y+7 y^{2}=226$
(b) Show that $\nabla \cdot\left(\nabla g^{m}\right)=m(m+1) g^{m-2}$, if $\bar{g}=x i+y j+z k$.
(c) A material body's geometric representation is a planar area R , delimited by the curves $y=x^{2}$ and $y=\sqrt{2-x^{2}}$ with hin the boundaries $0 \leq x \leq 1$. The density function associated with this model is denoted as $\rho=x y$.
i. Find the mass of the body.
ii. Find the coordinates of the center of mass.
5. A curve is defined parametrically by

$$
x(t)=a e^{t} \cos t, \quad y(t)=a e^{t} \sin t, \quad \text { and } \quad z(t)=\sqrt{2} a\left(e^{t}-1\right) .
$$

Find the following for the curve:
(a) The tangent vector $\hat{\mathbf{T}}$
(b) The curvature κ
(c) The principal normal vector $\hat{\mathbf{N}}$
(d) The binormal vector $\hat{\mathrm{B}}$
(e) The torsion τ

End of Exam!

